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We make a remark about an estimate of the rest for the non-resonant action-
angle normal forms and exhibit a simple example suggesting the optimality of
this estimate when there are no small divisors. Given a polynomial perturbation
of degree P and an integer k, calling # the size of the small denominators up to
order k, we prove that the kth order remainder is bounded by (2�=0)k+1 with
=0=const #2�(kP2). Thus, fixing the degree of the perturbation, if # is indepen-
dent of k (i.e., if there are no small divisors), we obtain a rest bounded by
(const k)k+1. These estimates are also applied to the case in which the small
divisors are absent, and they are conjectured to be optimal in this context. To
support this idea we present a simplified model problem with no small
denominators, formally related to the above calculations, and we show that
it indeed has factorial divergence of its Birkhoff series. We also obtain
Nekhoroshev's Theorem for harmonic oscillators. We hope that our simple
approach makes more accessible to a general audience this important (although
quite technical) topic.

KEY WORDS: Perturbation theory; stability of Hamiltonian systems;
Birkhoff series; method of majorants; harmonic oscillators.

1. INTRODUCTION AND SETUP

We study the perturbation theory of an integrable system expressed in
action-angle variables

H(I, .)=h(I )+=f (I, .) (1)
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whose equations of motion are I4 =&=�. f and .* =�I H. We consider =,
|=|�=0 as a small parameter. As usual, we denote by TN the N-dimensional
torus, and we define

BN
r (I$)#[I # CN s.t. |I&I$|�r], and

TN
` #[. # C s.t. R. # T and max

1�i�N
|I.|�`]

We require h and f to be real analytic for I in a neighborhood of I0 # RN

(say BN
\*(I0), with 0<\*<1) and f to be a trigonometric polynomial in .

of degree P. For convenience we fix 0<!<1 and consider TN
2! as the

domain in the .'s.
We now fix an integer k�2. We call

#=#(k)#min[1, \*!�}0 , min
0<|n1 |+ } } } +|nN |�kP

I # B N
\*(I0)

|h$(I ) } n|]

the size of the ``small denominators,'' where }0 is a suitable number (say
}0=32). We assume that the system (1) is non-resonant up the kPth order,
i.e., #>0.

Following a standard procedure in Hamiltonian perturbation theory
we find a change of variables that puts the system into one which depends
only on the actions until the k th order in =. More precisely, we recall the
following classic theorem, due to Birkhoff :2

Theorem (Birkhoff ). Consider the system (1) under the above
assumptions. Then, if =0 is small enough,3 there exists a real analytic
canonical transformation (I, .)=8k( y, x), =-close to the identity, and
suitable4 \, \>, !*, !>, such that

BN
\>(I0)_TN

!>�8k(BN
\ ( y0)_TN

!*)�BN
\*(I0)_TN

! (2)

and

H( y, x)#H b 8k( y, x)=h( y)+ :
k

j=1

= jgj ( y)+=k+1Rk( y, x; =) (3)

for some real analytic functions gj .
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2 See, for example, refs. 5 and 1. The method of ``averaging'' and dividing the motion into a
slow evolution and rapid oscillations was also used by Gauss, Lagrange and Laplace in their
studies of secular planetary motions.

3 See (7) and (8) for the choice of =0 .
4 We choose the superscript of \ and ! in this (apparently asymmetric) way for future

convenience, since the variable of the functions /j in (4) will be y and ..



The representation (3) is often called ``normal form,'' the new variables
( y, x) are called ``normal coordinates,'' and Rk is called the ``rest.'' The
study of the existence of transformations reducing a dynamical system to a
simple form was already in ref. 24 and has been investigated by many
authors. For a detailed survey on several normal forms in Hamiltonian
systems, see ref. 10. See also ref. 8 where a theory of normal forms for dif-
ferential equations is considered and Section 2 of ref. 9 for some applica-
tions to the Hamiltonian case.

Unless differently stated, we will adopt the name of ``constants'' to
denote quantities which do not depend on =, k and P, but may depend on
N, \*, !, h and f. We will reserve the symbol }i to denote suitable ``pure
numbers'' (like 2, 4, etc.).

The statement of Birkhoff 's Theorem can be made more explicit, saying
that g1 is the average of f in the angles and that the transformation 8k is
obtained by a generating function of the type G( y, .)= y } .+�k

j=1 = j/j( y, .),
corresponding to the transformation

I= y+ :
k

j=1

= j �./j , x=.+ :
k

j=1

= j �y/j (4)

The /j 's can be computed recursively as follows. Denote the Fourier coef-
ficients by `` }̂ ,''

/1( y, .)= :
n # Z N

0<|n1 |+ } } } +|nN |�P

if� n( y)
h$( y) } n

e in } .,

(5)

/j ( y, .)= :
n # Z N

0<|n1 |+ } } } +|nN |� jP

i1� ( j )
n ( y)

h$( y) } n
ein } .

for all 2� j�k, where, denoting by [ } ]j the j th order in power series of =,

1 ( j)#_h \ y+ :
j&1

m=1

=m�./m+& j
+_ f \y+ :

j&1

m=1

=m�./m , .+& j&1

(6)

The function gj , for 2� j�k, is the average of 1 ( j ) in the angles. Sending
k to �, we obtain a formal series � j�1 = j /j , called Birkhoff series.5

907Estimates for Non-Resonant Normal Forms

5 Other approaches to this problem are also possible. See for instance ref. 2, in which Birkhoff
series of generating functions are replaced by a convenient iteration of Lie transforms.
Indeed, the bound on =0 in formula (16) of our note can be seen as a slight improvement,
in the non-resonance case with polynomial perturbation of a fixed degree, of the one given
in formula (24) of ref. 2. Indeed, the latter requires =0 to be smaller than #2�kN+2, while our
formula (16) allows =0 to be of the size of #2�k.



It is well known that Birkhoff series are in general divergent. For
example one can show that the two degrees of freedom Hamiltonian

|I1+I2+= \I1+ :
n # Z 2

e&|n1 | &|n2 | cos n } .+
has divergent Birkhoff series, where | is the golden number (see ref. 14).

In Proposition 2.5 we will show that this divergence is, in the worst
case, factorial, i.e., the size of /j will be controlled by P2( j&1)( j&1)!�#2j&1.

We now discuss the condition over =0 to be required in Birkhoff 's
Theorem. First, we must assume that

=0 is small enough that the transformation 8k , implicitly defined
by (4), is a diffeomorphism for ( y, x) in a suitable domain
BN

\ ( y0)_TN
/* , satisfying (2) (7)

Moreover, we require that

:
k

j=1

= j
0 sup

B\
N( y0)_T!

N
|�./j |�\*�4 (8)

This condition ensures that relations such as (6) are well defined, and that
BN

2\( y0)�BN
\*�2(I0), provided that \�\*�8 (we will use it in Proposition 2.4;

Proposition 2.6 will allow us to choose \=\*�8).
The general estimate stated in our paper is Theorem 2.7, in which we

prove that

Theorem. Set =0#c*#2�(kP2), where c* is a suitable constant.
Then, the following bound on the rest Rk of the Birkhoff normal form (3)
holds:

sup
B\

N( y0)_T
N
!* , |=| �=0�2

|Rk |� sup
B N

\*(I0)_T!
N

|H | } \ 2
=0+

k+1

Moreover the following bound on the size of the j th order in = of the
new Hamiltonian holds:

sup
B\

N( y0)_T
N
!*

| gj |� sup
B N

\*(I0)_T!
N

|H | } \ 1
=0+

j

Similar estimates are already present in the literature. For instance, one can
compare our Proposition 2.5 with Section 6 of ref. 15 and with the Main
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Proposition of ref. 3. In the case of harmonic oscillators with (_, N )-
Diophantine frequency6 with polynomial perturbation, our Proposition 2.5
is indeed a slight improvement of formula (6.6) of ref. 15 and formula (6.11)
of ref. 3. Namely, for polynomial perturbation with a fixed degree, the above
mentioned papers give a bound on �./k of the type (const)k k! k2Nk+k,
while Proposition 2.5 here leads indeed to the bound (const)k k! k2Nk&N.

At variance with the proofs mentioned above, we will make use only
of the traditional method of majorants (see the following Definition 2.1
and, for example, refs. 18 and 26). In spite of its very classical flavor, this
method (as far as we know) has not been extensively used in this context.
In our paper, the use of the method of majorants will provide a very short
proof, in which only elementary computations are involved.

Also, the way the above result is stated and proved here, directly
allows a comparison with the case of no small divisors (which is of inde-
pendent interest: see ref. 22). Indeed, we believe that the estimates above
are probably not too far from being sharp even when the small divisors are
absent, as the simplified example in Section 3 will show. We consider the
Hamilton�Jacobi equation for the perturbation of a simple one-dimen-
sional harmonic oscillator |I+2(1&I) = cos .. Since the effect of the
operator |�. is just multiplying for a small denominator, a reasonable
example with no small denominators could be obtained substituting 1
instead of |�. . We easily prove that this simplified model shows a factorial
growth of Birkhoff series. The same procedure of considering easier
problems with no small denominators was used, in a different setting, in
ref. 6.

As remarked in refs. 15, 16, 3, and 25 the estimates developed in our
paper are enough to prove Nekhoroshev's Theorem in the case of harmonic
oscillators, obtaining exponentially long times of stability for systems of the
type H(I, .)=| } I+=f (I, .), where | is a Diophantine vector and f is an
analytic periodic perturbation. For comments about the relevance of the
case of the harmonic oscillators, see page 294 of ref. 3.

With more refined techniques it is possible to extend the validity of
these estimates even to the resonant case, providing the so called ``analytic
part'' of Nekhoroshev's Theorem, which was firstly proved, under suitable
conditions of ``steepness,'' in ref. 23. See for example: ref. 25 with an
iterative finite KAM algorithm; refs. 2 and 17; refs. 20 and 21 which con-
sider perturbation theory around periodic orbits. We believe that the
estimates developed in our paper, although not new in the literature, are
easier than the ones usually developed in the proofs of Nekhoroshev's
Theorem, but they remain essentially optimal in the case of no small
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6 See page 13 for the definition of Diophantine vector.



denominators. Unfortunately, it is not easy to extend our method near the
resonances, since in this case differentiation with respect to the actions
appears in the definition of the transformation, making it difficult to invent
a good majorant problem.

We also stress the fact that the problem of the optimality of the
exponents in Nekhoroshev's Theorem (as stated in refs. 25 and 20) is
related but not equivalent to the one discussed here in Section 3, since the
latter refers to the case of no small divisors. For a more detailed discussion
about the optimality of refs. 25 and 20 and a conjecture of Chirikov, see
refs. 11 and 4.

We remark that the problem of divergent Birkhoff series with no small
denominators is a classic topic in literature: see, for example, refs. 22 and
12. Also perturbation theory around periodic orbits (as the one used in
ref. 20 for Nekhoroshev's Theorem) leads to series with no small divisors,
since the denominators are in this case controlled by the inverse of the
period. Estimates similar to the one in our paper arise in computing center
manifolds too, and in this context they turn out to be sharp. We refer to
refs. 27, 28, 19, 13 and references therein for a more complete discussion of
center manifolds.

Also the study of the properties of divergent series is a classic topic in
the theory of ``resurgent analysis'' and ``resummation:'' see, for example,
refs. 7 and 28. The sketch of our prove is the following: instead of solving
the recurrence (5)�(6), we will consider in Lemma 2.3 a ``majorant
problem,'' i.e., a problem whose solution ``dominates'' the solution of
(5)�(6). In detail: we will consider the functional equation (11), showing
that it admits a solution 9=� = j9j , and we will prove that the Fourier
coefficients of the 9 j 's control, up to a factorial, the ones of the /j 's defined
by (5)�(6).

2. ESTIMATE ON THE REST

Definition 2.1. Consider the formal Taylor�Fourier expansions of
two functions f and g:

f (z, .)= :
n # ZN, m # NM

fn, mzmein } . and

g(z, .)= :
n # ZN, m # NM

gn, m zmein } .

where z is an M-dimensional vector and . is an N-dimensional angle. We
say that g is a majorant of f (and we briefly write fOg) if | fn, m |�gn, m .
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We denote

f� (z, .)# :
n # ZN, m # NM

| fn, m | zme in } ..

We will use afterwards the following easy results, the proof of which is
elementary:

Lemma 2.2. For all n, m # N, m�2,

max[ j1! } } } } } jp !, j1 ,..., jp # N, j1+ } } } + jp=n]=n! (9)

max[ j1! } } } } } jp !, j1 ,..., jp # N,

1� j1 ,..., jp�m&1, j1+ } } } + jp=m]=(m&1)! (10)

The following lemma formulates the majorant problem. We denote, for all
x # C, x� #(x,..., x)

N times

. We call '0 an auxiliary parameter, and consider by now

|=|�'0 :

Lemma 2.3. Take y # BN
\*�2(I0). Define,7 for all z # BN

\*�2(0),

Qy(z)#h( y+z)&h( y)&h$( y) } z,

Fy(z, .)#f ( y+z, .)

Set E#[= # C, |=|�'0]. Fix R�\*�(2 - N ) such that

sup
| y&I0 |�\*�2, |z|��R

|�zQ� y |�#�(4 - N )

Then, there exists a unique 9=9y(., =) real analytic for ( y, ., =) #
BN

\*�2(I0)_TN
2!_E, such that 9y(., 0)=0, supB N

\*�2(I0)_T
N
2!_E |9 |�R, and

#9&Q� y(99 )&=F� y(99 , .)=0 (11)

provided that = # E and

'0�min { #R

2 sup
y # B N

\*�2( y0), . # T
N
2!

|F� y(0, .)|
,

#

4 - N sup
y # B N

\*�2(I0), |z|��R, . # T
N
2!

|�zF� y |=
(12)
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Proof. Denote & }&#supB N
\*�2(I0)_T

N
2!_E | } |, B#[u # C|(BN

\*�2(I0)_
TN

2!_E) s.t. &u&�R] and, \u # B,

F[u]( y, ., =)##&1Q� y(u� ( y, ., =))+#&1=F� y(u� ( y, ., =), .)

one sees that F is a contraction over B endowed with the norm & }&.
Notice that the condition R�\*�(2 - N ) assures that Q� y(u� ) and F� y(u� , .)
are well defined. K

Remark. It is easy to check that the hypotheses of the lemma above
are fulfilled if we choose R#c1# and '0#c2#2, for suitable constants c1

and c2 .
We now consider the =-expansion of the function 9 built in the

previous lemma: 9y(., =)=� j�1 = j�j ( y, .).
Note that, by definition, \r�2,

1 (r)( y, .)=_Qy \ :
r&1

j=1

= j �./j +&r
+_Fy \ :

r&1

j=1

= j �./ j , .+& r&1

(13)

We remark that in the previous lemma (as well as in the next proposition)
it is convenient to think y as a parameter, and we do majorant theory in
z and . only. So if

Qy(z)= :
p # NN

Qp( y) z p, Fy(z, .)= :
p # NN, n # ZN

Fn, p( y) z pein } .

we have

Q� y(z)= :
p # NN

|Qp( y)| z p, F� y(z, .)= :
p # NN, n # ZN

|Fn, p( y)| z pein } .

In the same way, fixing y in the next proposition, we do majorant theory
for / and 9 only with respect to the variable ..

The following Proposition 2.4 will show that 9j is a majorant, up to
a factorial, of /j . From this, Proposition 2.5 will deduce the claimed bound
on the coefficients of Birkhoff series.

Proposition 2.4. Assume \�\*�8. Fix y # BN
2\( y0)�BN

\*�2(I0). Let
9 be the function defined in the previous lemma. Then, for all j # N,

/j OP2( j&1)( j&1)! 9j

[i.e., |(@/j )n ( y)|�P2( j&1)( j&1)! ( @9j )n ( y).]
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Proof. Writing the =-expansion of 9 in (11) one obtains

# :
j�1

= j9j&Q� y \ :
j�1

= j99 j+&=F� y \ :
j�1

= j99 j , .+=0 (14)

Taking the first order, we get #91& f� ( y, .)=0; so, by definition of /1 ,
91= f� �#o/1 . This is the inductive basis of our, statement. For the induc-
tive step we suppose to have proven the result for all 1�r&1 and we take
the r th order of (14):

9r=
1
# \_Q� y \ :

r&1

j=1

= j99 j +& r
+_F� y \ :

r&1

j=1

= j99 j , .+& r&1+ (15)

So that, by (9), (10), (13), the definition of /r and the fact that �./ jO jP/� � j :

/rO
1
#

1� (r) O
1
# \_Q� y \ :

r&1

j=1

= j �/j

�. &r
+_F� y \ :

r&1

j=1

= j �/j

�.
, .+& r&1 +

O
1
# \_Q� y \ :

r&1

j=1

= jPj/� � j +& r
+_F� y \ :

r&1

j=1

= jPj/�� j , .+&r&1+
O

1
# \_Q� y \ :

r&1

j=1

= jP2j&1j ! /� j+&r
+_F� y \ :

r&1

j=1

= jP2j&1j ! /� j , .+& r&1+
O

1
# \P2(r&1) max

2� p�r

1� j1 ,..., jp�r&1

j1+ } } } + jp=r

j1 ! } } } jp! _Q� y \ :
r&1

j=1

= j99 j +&r

+P2(r&1)&1 max

1� p�r&1

1� j1 ,..., jp�r&1

j1+ } } } + jp=r&1

j1 ! } } } jp ! _F� y \ :
r&1

j=1

= j99 j +& r&1+

O
1
#

P2(r&1)(r&1)! \_Q� y \ :
r&1

j=1

= j99 j +& r
+_F� y \ :

r&1

j=1

= j99 j , .+& r&1+
=P2(r&1)(r&1)! 9r

ending the proof. K
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Lemma 2.3 and Proposition 2.4 imply the following

Proposition 2.5. There exists a constant c such that

sup
B N

2\( y0)_T
N
!

|/j |�c
P2( j&1)( j&1)! #

' j
0

and

sup
B N

2\( y0)_T
N
!

|�./j |�c
P2j&1j ! #

' j
0

Remark. Following the notations of ref. 28, pp. 12�14, the previous
proposition states that, in the case of no small denominator (i.e., # inde-
pendent of k), the Birkhoff series � = j/ j are in the Gevrey class G1 , and the
corresponding Borel transform � = j/j � j ! is defined for |=| small enough.

We are now in position to choose =0 , \, \>, !* and !> in such a way
to fulfill the requirements of Birkhoff 's Theorem. Proposition 2.5 and an
easy contraction argument lead to the following:

Proposition 2.6. Define

=0#
c*#2

kP2 , \#
\*
}1

, \>#
\*
}2

, !*#
!

}3

, !>#
!

}4

(16)

where c* is a suitable constant, and }i are suitable numbers. Then condi-
tions (7) and (8) are satisfied.

Proof. By Proposition 2.5 and the Cauchy inequality, there exists a
constant c~ such that

sup
B N

2\( y0) # T
N
!

|�./ j |�# \c~ jP2

'0 +
j

, sup
BN

\ ( y0)_T
N
!

|�y/j |�
#
\ \

c~ jP2

'0 +
j

,

and sup
B N

\ ( y0)_T
N
!

|�2
y. /j |�

#
\ \

c~ jP2

'0 +
j

(17)

So, choosing c* to make c~ kP2=0 �'0�1�2,

:
k

j=1

= j
0 sup

BN
\ ( y0)_TN

!

|�./j |�# :
k

j=1 \
1
2+

j

<#<
\*
4

proving (8).

914 Valdinoci



We now show that, with the above choice of =0 , \ and /*, for any
( y, x) # BN

\ ( y0)_TN
!* there exists a unique (I, .) # BN

\*(I0)_TN
! verifying

(4). Given ( y, x) # BN
\ ( y0)_TN

!* , define C(.)#x&�k
j=1 = j �y/j ( y, .). By

(17), C is a contraction on TN
! , so there exists a unique .

*
# TN

! such that
C(.

*
)=.

*
. Setting I

*
= y+�k

j=1 = j �. /j ( y, .
*

), we have that I
*

# B\*(I0)
by (17). This proves the existence.

For the uniqueness, if (I, .), (I$, .$) # BN
\*(I0)_TN

! verify:

I= y+ :
k

j=1

= j �./j ( y, .), I$= y+ :
k

j=1

= j �./j ( y, .$), C(.), C(.$)=.$

then it must be .=.$ and so I=I$.
In the same way, using the contraction C� ( y)#I&�k

j=1 = j �. /j ( y, .)
on BN

\ ( y0), one sees that \(I, .) # BN
\>(I0)_TN

!> there exists a unique
( y, x) # B\( y0)_TN

!* verifying (4). K

The estimates above are summarized in the following

Theorem 2.7. With the choices in (16), the following bound on the
rest Rk of the Birkhoff normal form (3) holds:

sup
y # B N

\ ( y0), x # T
N
!* , |=|�=0 �2

|Rk |� sup
BN

\*(I0)_T
N
!

|H | } \ 2
=0+

k+1

(18)

Moreover, the following bond on the size of the j th order in = of the new
Hamiltonian holds:

sup
y # B N

\ ( y0), x # T
N
!*

| gj |� sup
B N

\*(I0)_T
N
!

|H | } \ 1
=0+

j

(19)

Proof. Fixed |=|�=0 �2, writing the =-expansion of H we have that
there exist =*, |=*|�=0 �2 such that

H( y, x; =)= :
k

j=0

= jHj ( y, x)+
=k+1

(k+1)!
�k+1H

�=k+1 ( y, x; =*)

From Birkhoff 's Theorem one has H0=h and Hj=(1� j !)(� jH��= j )( y, x; 0)
= gj for 1� j�k and Rk( y, x; =)#[1�(k+1)!](�k+1H��=k+1)( y, x; =*).
Then apply the Cauchy Estimate. K
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3. A SIMPLE MODEL WITH NO SMALL DENOMINATORS BUT
WITH DIVERGING BIRKHOFF SERIES, SUGGESTING THE
``SHARPNESS'' OF THE PREVIOUS ESTIMATES

The estimates in Proposition 2.4 state that the divergence of the formal
series � = j/j is not only due to the small divisors, but it is, in the worst cases,
factorial. To suggest the optimality of this estimate we present a simplified
model: we consider the perturbation of an harmonic oscillator

H(i, .)=|I+=f (I, .)

with I # R, . # S1 and f =(ei.+e&i.)(1&I )=2 cos . } (1&I ). Looking for
a transformation generated by G( y, .)= y.+/( y, .)= y.+� j�1 /j ( y, .)
in order to ``integrate'' the system, i.e., to find a new Hamiltonian depending
only on the action variables, we obtain the ``Hamilton�Jacobi equation''

|�./+=f ( y+�./, .)=0 (20)

Since the effect of the operator |�. is ``multiplying for a small denominator,''
instead of (20) we consider the following simplified problem, in which we
suppress the small divisors:

u+=f ( y+�.u, .)=0 (21)

where u( y, .)=� j�1 = juj ( y, .) is the unknown function. The formal solu-
tion of (21) is

uj={_j ( y&1) :
( j&1)�2

k=0

cj, k cos(( j&2k) .)

_j ( y&1) :
( j&2)�2

k=0

cj, k sin(( j&2k) .)

if j is odd

if j is even

for suitable cj, k�0 with cj, 0=2( j&1)! and _j=\1. This shows that, if j
is odd, uj evaluated in y=0 and .=0 grows up factorially. This example
shows that, even in problems with no small divisors, the Birkhoff series can
diverge with a factorial growth.

4. NEKHOROSHEV'S THEOREM FOR HARMONIC
OSCILLATORS WITH DIOPHANTINE FREQUENCIES

We now apply the previous estimates to obtain exponentially long
times of stability for perturbations of harmonic oscillators with ``strongly
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non-resonant'' frequencies. As customary, we denote by (I(t), .(t)) the
solution of the Hamilton equations with initial value (I(0), .(0)).

The following result can be easily derived by an optimization argu-
ment and a ``cut-off '' in the perturbation similar to the one in ref. 3. More
precisely: given a periodic perturbation, we will split it into two terms, and
the first term will be a trigonometric polynomial of an appropriate degree:
the degree of this polynomial is chosen in order to optimize our estimate.

Theorem 4.1. Consider the system H(I, .)=| } I+=f (I, .), where
I # BN

\*(I0), . # TN
2! , f is real analytic and periodic in .. Assume that | # RN

is (_, {)-Diophantine, i.e., there exist two constants _, {>0, such that
|| } n|�_ |n|&{, \n # ZN&[0].

Then, we have stability in the actions for exponentially long times, i.e.,
there exist constants ci>0, i=0,..., 6, such that

|I(t)&I(0)|�c0=c1 \|t|�c2 =c3 exp
c4

=c5
(22)

for any initial data satisfying |I(0)&I0 |�\*�c6 .
The constants c1 , c3 and c5 depend only on {, the others may also

depend on \*, !, H and _.

Proof. Take P#1�=1�(3{) and k as the integer part of c>�(=P2{+2)1�(2r+1)

with c>#1�(C2e)1�(2r+1), standing the Ci 's for suitable positive constants as
follows. Write f = f�P+ f>P , where f�P#� |n|�P f� n(I ) ein } ..

The size of f>P is controlled by C1e&C1 �=1�(3{)
. We call ( y(0), x(0)) the

point in normal coordinates corresponding to (I(0), .(0)). By the Diophantine
condition, we have that #�C0 �(kP){. Looking at the system in normal
form (3), recalling Theorem 2.7, we have

| y(t)& y(0)|�(sup |H |+1) k{+1=�C3 =c1�\,

\|t|�min { k{+1=
(C2 =P2{+2k2{+1)k+1 ,

k{+1

C1e&C1 �=1�(3{)= (23)

By Proposition (2.5), \ | y& y0 |�\ and . # TN
! ,

} :
k

j=1

= j �./j }� #
P

:
k

j=1
\c~ k=P2

'0 +
j

�
2#
P

}
c~ k=P2

'0

�C4=c1 (24)

So (22) follows by (23) and (24). Notice that, with the definitions in (16),
C2 depends on c* [explicitly one can assume C2#2�(c*C 2

0)], so that
=0�c*C 2

0(C2e) =�2=. K
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